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For the possibility of asymptotic stability, the rank of A
must not be less than two for all values of X. The roots
making the determinant of the 2 X 2 matrix, formed by rows
1 and 2, equal to zero are

ffSri + rir, + 1~|2 I 1 / 2IL—2~J -S
The roots of the determinant of the matrix formed by rows 1
and 3 are determined from

X[X2(ri — 7-3)

Similarly, for rows 2 and 3,

- (3r3 + r2r3 + 1) ,

0

fr3r3 + r2r3+ 112

IL—2—J - 4r2r3

The only possible condition that is still allowed by Eqs*
(10-12), under which the roots of all three of the previous
equations are equal, is TI = r3. Thus, the rank of the matrix
A will not be less than two if r\ ̂  r3, or using the definitions of
TI and r3, if

(/22 ~ (13)

The augmented matrix (K',Cf) is

"4(J2 -
0

0
G/2 -

o
The rank of the matrix Kf is two and the rank of (Kf fl') can
be shown to be not equal to two provided that

-47172
Ii1 72

which is already not permitted by Eq. (12). Therefore, if
the requirements given by Eqs. (10-13) are satisfied the only
X* vector that is a solution of the rotational equations is the
trivial solution and the roll-yaw librations are asymptotically
stable.
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Nomen clature

orthogonal coordinate system
principal axes of the cross section
vertical load
second moment of area about the y axis
Young's modulus
Poisson's ratio
modulus of rigidity
coordinate of the flexural center
shear stress due to torsion in th,e yz and xz

plane, respectively
shear stress due to bending in the yz and xz

plane, respectively
stress function in bending denned by
^ dv v Fy _ df(y}
dx2 dy2 1 + v I dy
and

C

d^ \~Fx*
b7 = L 27

dy
~ at the

f(y)
c; r
ds

arbitrary function of y only
constants of integration
element of boundary curve
stress function in torsion defined by

dV/d^/2 = — 2 and <p = 0 at the boundary
stress function denned by

, +\-\-vI dy
and ^i = 0 at the boundary

fa(x>y) = stress function denned by 52^2/dx2 + c)V2/
dy2 = 0 and dfo = [Fxz/2I - f(y)]dy at the
boundary

Introduction

THE question of the dependence of the center of flexure
on Poisson's ratio was explicitly stated first by

W. R. Osgood.1 This question has remained unanswered
till now, and there are a great number of recent publications
where the center of flexure is determined in one way or
another.

We shall develop here a general formula for the position
of the flexural center by considering the results obtained
previously.2 The formula obtained shows that the position
of the center of flexure does not depend on Poisson's ratio.

The Center of Flexure

The center of flexure is that point at the cross section where
the resultant of the shear stresses acts, i.e. where the load is
attached. To find the shear center, the shear stresses over
the cross section have to be determined by using formulas

(1)

(2)

in which f(y) is a function of y only and \l/ satisfies the equa-
tion

df(y)
dy (3)
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at all points of the cross section and the condition

,1 dyJ T s

We prove now that

(4)

at all points of the boundary curve, c is a constant of
integration, ds is an element of the boundary curve. F is
the load assumed to act vertically on a horizontal cantilever
beam. The natural requirement of bending by transversal
vertical force is that the resultant moment due to horizontal
shear stresses is zero. In this case the resultant of the shear
stresses over the cross section is equal to the transversal force
which is the actual load applied at the end of the beam.
Analytically expressed, this requirement is

ffxTyZdxdy = 0 (5)

We make use now of the condition (5) and proceed to deter-
mine the position of the center of flexure. Since we have
already

ffryzdxdy = 0 (6)

the resultant shear stresses are in the vertical plane only
and satisfy the condition of bending by the vertical transverse
load. If for any value of the arbitrary constant c the condi-
tion (5) is not fulfilled, we introduce torsional stresses

= +Gr ; ,. - - Or* (7)

where the stress function <p(x,y) is defined by

5V , o _= ' ^Boundary -

and require

SSx(ryz + tyz)dzdy = 0 (9)

The|known formula for the position of the center of flexure

2/o = | ff (yrxz - xr.yz)dxdy (10)

is reduced now to

2/0 = j ffy(Txz + l^dxdy (1X)
From the theory of Saint-Venant's torsion we may write

Sfxtyzdxdy = -ffytxzdxdy (12)

From (9), (11), and (12) we obtain

1

With (1) and (2) for rxz and ryz, the formula (13) has the form

where $ is defined by (3) and (4). To simplify the formula
(14) we observe the integral

'- //(»£-£)** <16)
split \l/ into \f/i + i/% and satisfy the conditions (3) and (4)
by writing

d'fc dVi v Fy df(y)~ ~
(17)

is equal to zero. We first transform TI and obtain

or with \l/i Boundary
to

(19)
0, TI = 0. Equation (14) then changes

>}•- - +**>**
where ^2 is defined by (17).

Conclusion

As we see from Eqs. (20) and (17), the center of flexure is
independent from Poisson's ratio.
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Introduction

FACILITIES such as hypersonic tunnels and gas guns
often operate at very high pressures where dense-gas

effects must be taken into account in aerodynamic design and
performance calculations. The purpose of this Note is to
present accurate analytical expressions for the compressi-
bility factor, internal energy, enthalpy, entropy, sound
speed, and specific heats of nondissociating, vibrationally
excited nitrogen. These properties are obtained using
thermo'dynamic relations with the aid of two carefully
selected semiempirical equations of state that apply below
and above the critical density, respectively. The constants
in these equations of state were chosen to provide the best
agreement of the resulting thermodynamic properties with
the Arnold Engineering Development Center (AEDC)
tables of Grabau and Brahinsky.1

Equations of State

Below the critical density, the equation of state employed
is a modified Van der Waals equation, which for one mole of
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