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" The matrix A for this case is
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For the possibility of asymptotic stability, the rank of A
must not be less than two for all values of A. The roots
making the determinant of the 2 X 2 matrix, formed by rows
1 and 2, equal to zero are
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The roots of the determinant of the matrix formed by rows 1
and 3 are determined from

MM — 1) + 4 — )] =0
Similarly, for rows 2 and 3,
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The only possible condition that is still allowed by Eqgs:
(10-12), under which the roots of all three of the previous
equations are equal, is 7, = r;.  Thus, the rank of the matrix
A will not be less than two if r; 7 rs, or using the definitions of
7y and 73, if

(Ist — LY/t = (I — IH/12 (13)
The augmented matrix (K’,C") is

40T, — J) 0 —4(I — I)b
(K',C") = [ 0 (Js—J3) 0 }
412 — I 0 — 42 = I:Y) 4 kb

The rank of the matrix K’ is two and the rank of (K’,C’) can
be shown to be not equal to two provided that

@ » —471’)’2
It [/ 1)y + 2

which is already not permitted by Eq. (12). Therefore, if
the requirements given by Eqs. (10-13) are satisfied the only
X* vector that is a solution of the rotational equations is the
trivial solution and the roll-yaw librations are asymptotically
stable.
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Does the Center of Flexure Depend
on Poisson’s Ratio?

Towma Lero*
The M. W. Kellogg Company, New York, N.Y.

Nomenclature
Ozyz orthogonal coordinate system
z,y principal axes of the cross section
F vertical load

second moment of area about the y axis
Young’s modulus
Poisson’s ratio

1 = ffzdxdy
E

v

O 1 | I T

G modulus of rigidity
Yo coordinate of the flexural center
tez; tyz shear stress due to torsion in the yz and xz
plane, respectively
Tz Tyz = shear stress due to bending in the yz and zz
plane, respectively
Y(r,y) = stress function in bending defined by
v M s By _diw)
oz T oy T 14w T dy
and
o [ ke .
5 = l: o7 —f(y)] ds at the boundary
fly) = arbitrary function of y only
c; T = constants of integration
ds = element of boundary curve
e(z,y) = stress function in torsion defined by 32¢/022% |-
A%p/Oy? = —2 and ¢ = 0 at the boundary
Yi(e,y) = stress function defined by
u  w_ v Fy_d)
ox? oyt 14w I dy
and 1 = 0 at the boundary
Yal,y) = stress function defined by 0%y./0x2 + d%yy/
oyt = 0 and dy. = [Fz2/2] — f(y)]ldy at the
boundary
Introduction

HE question of the dependence of the center of flexure

on Poisson’s ratio was explicitly stated first by
W. R. Osgood.! This question has remained unanswered
till now, and there are a great number of recent publications
where the center of flexure is determined in one way or
another.

We shall develop here a general formula for the position
of the flexural center by considering the results obtained
previously.? The formula obtained shows that the position
of the center of flexure does not depend on Poisson’s ratio.

The Center of Flexure

The center of flexure is that point at the cross section where
the resultant of the shear stresses acts, i.e. where the load is
attached. To find the shear center, the shear stresses over
the cross section have to be determined by using formulas

Tar = OY/Qy — Fu?/2l + f(y) (1
. = —(0¢/0z) @)

in which f(y) is a function of y only and ¢ satisfies the equa-
tion

oy o _ » Fy_ dfy)
ox? o 14wl dy e @)
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at all points of the cross section and the condition

oY Fx dy
- |2 @
at all points of the boundary curve. ¢ is a constant of
integration. ds is an element of the boundary curve. F is
the load assumed to act vertically on a horizontal cantilever
beam. The natural requirement of bending by transversal
vertical force is that the resultant moment due to horizontal
shear stresses is zero. In this case the resultant of the shear
stresses over the cross section is equal to the transversal force
which is the actual load applied at the end of the beam.
Analytically expressed, this requirement is

SSfxr,dxdy = 0 (5)

We make use now of the condition (5) and proceed to deter-
mine the position of the center of flexure. Since we have
already

Jfr,dxdy = 0 (6)

the resultant shear stresses are in the vertical plane only
and satisfy the condition of bending by the vertical transverse
load. If for any value of the arbitrary constant ¢ the condi-
tion (5) is not fulfilled, we introduce torsional stresses

Op
= +Gr Z’ Iy = — GTDx (7)
where the stress function ¢(z,y) is defined by
0% | 0%
é—ﬁ + -—2 —'2, ¢¥Boundary ™ 0 (8)
and require
JSe(ry. + ty)dedy = 0 )
The¥known formula for the position of the center of flexure
1
-1 f f (Yres — o7y:)dady (10)

is reduced now to
1
w =5 [ vra + tazy an

From the theory of Saint-Venant’s torsion we may write

Sty dady = —ffyt..dzdy (12)
From (9), (11), and (12) we obtain

) |
vo= 5 [f ree + wriddody (3)

With (1) and (2) for 7,. and 7,., the formula (13) has the form
o) F
w=pff v - o2 - B2 ) anay a9

where ¢ is defined by (3) and (4).
(14) we observe the integral

T = ff( «—xy>dxdy (15)

split ¢ into Y1 -+ ., and satisfy the conditions (3) and (4)
by writing

%, | Oy v Fy dfy)
61152 ayz = 5 = T3 + C; lplBoundary =

14» I dy
o, O
dz? dy?

To simplify the formula

0 (16)

= 0, dkaBoundary = <Fx f(y)) dy (17)
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We prove now that

f f < o0 _ a‘“) dedy (18)

We first transform 7T, and obtain

= Sayfoxdin = Slydilide — Slayalfidy
(19)

or with ¥1 Boundary = 0, Ty = 0. Eguation (14) then changes
to

O o] F
we S 2 -2 - T by oo

where ¥ is defined by (17).

is equal to zero.

= Jdz fyydyy

Conclusion

As we see from Eqs. (20) and (17), the center of flexure is
independent from Poisson’s ratio.
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Formulas for the Thermodynamic
Properties of Dense Nitrogen
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Introduction

ACILITIES such as hypersonic tunnels and gas guns

often operate at very high pressures where dense-gas
effects must be taken into account in aerodynamic design and
performance calculations. The purpose of this Note is to
present accurate analytical expressions for the compressi-
bility factor, internal energy, enthalpy, entropy, sound
speed, and specific heats of nondissociating, vibrationally
excited nitrogen. These properties are obtained using
thermodynamic relations with the aid of two carefully
selected semiempirical equations of state that apply below
and above the eritical density, respectively. The constants
in these equations of state were chosen to provide the best
agreement of the resulting thermodynamic properties with
the Arnold Engineering Development Center (AEDC)
tables of Grabau and Brahinsky.!

Equations of State

Below the critical density, the equation of state employed
is a modified Van der Waals equation, which for one mole of
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